Random Variables

The step function and sign function relation:

\[u(t) = \frac{1}{2} [1 + \sgn (t)].\]

Discrete step function and Kronecker delta function:

\[u(n) = \sum_{k = -\infty}^n \delta(k).\]

For different random variables, we will characterize their distributions by several parameters. These are listed below

  • Probability density function (PDF)
  • Cumulative distribution function (CDF)
  • Probability mass function (PMF)
  • Mean (\(\mu\) or \(\EE(X)\))
  • Variance (\(\sigma^2\) or \(\Var(X)\))
  • Skew
  • Kurtosis
  • Characteristic function (CF)
  • Moment generating function (MGF)
  • Second characteristic function
  • Cumulant generating function (CGF)

Cumulative distribution function

The CDF is defined as

\[F_X (x) = \PP ( X \leq x).\]

Properties of CDF:

\[F_X(x) \geq 0, \quad F_X(-\infty) = 0, \quad F_X(\infty) = 1.\]

CDF is a monotonically non-decreasing function.

\[x_1 < x_2 \implies F_X(x_1) \leq F_X(x_2).\]

\(F_X(-\infty)\) is defined as

\[F_X(-\infty) = \lim_{x \to - \infty} F_X(x).\]

Similarly:

\[F_X(\infty) = \lim_{x \to \infty} F_X(x).\]

\(F_X(x)\) is right continuous.

\[\lim_{x \to t^+} F_X(x) = F_X(t).\]

Probability density function

Properties of PDF

\[f_X(x) \geq 0.\]
\[\int_{-\infty}^{\infty} f_X(x) d x = 1.\]

The CDF and PDF are related as

\[F_X(x) = \int_{-\infty}^x f_X(t ) d t.\]

Expectation

Expectation of a discrete random variable:

\[\EE (X) = \sum_{x} x p_X(x).\]

Expectation of a continuous random variable:

\[\EE (X) = \int_{- \infty}^{\infty} t f_X(t) d t.\]

Expectation of a function of a random variable:

\[\EE [g(X)] = \int_{- \infty}^{\infty} g(t) f_X(t) d t.\]

Mean square value:

\[\EE [X^2] = \int_{- \infty}^{\infty} t^2 f_X(t) d t.\]

Variance:

\[\Var(X) = \EE [X^2] - \EE [X]^2.\]

\(n\)-th moment:

\[\EE [X^n] = \int_{- \infty}^{\infty} t^n f_X(t) d t.\]

Characteristic function

The characteristic function is defined as

\[\Psi_X(j \omega) \triangleq \EE \left [ \exp (j \omega X) \right ].\]

PDF as Fourier transform of CF.

\[\Psi_X(j\omega) = \int_{-\infty}^{\infty} e^{j \omega x} f_X(x) d x.\]
\[f_X(x) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-j \omega x} \Psi_X(j\omega) d \omega\]
\[\Psi_X(j 0) = \EE (1) = 1.\]
\[\left. \frac{d}{ d \omega} \Psi_X(j\omega) \right |_{\omega = 0} = j \EE [X].\]
\[\left. \frac{d^2}{ d \omega^2} \Psi_X(j\omega) \right |_{\omega = 0} = j^2 \EE [X^2] = - \EE [X^2].\]
\[\EE [X^k] = \frac{1}{j^k} \left. \frac{d^k}{ d \omega^k} \Psi_X(j\omega) \right |_{\omega = 0}.\]

Let \(Y_1, \dots, Y_k\) be independent. Then

\[\Psi_{Y_1 + \dots + Y_k} (j \omega) = \prod_{Y_1, \dots, Y_K} \EE [ \exp (j \omega Y_i)].\]

Moment generating function

The moment generating function is defined as

\[M_X(t) \triangleq \EE \left [ \exp (t X) \right ].\]

Second characteristic function

Cumulant generating function